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Fourier transform, heuristic

Let’s consider the Fourier series of a periodic function f with period 2L:

f (x) =
a0

2
+
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ

L
x
))

Taking the limit L→∞ the harmonics ωn = nπ
L are getting thicker, that

is, ∆ω = ωn+1 − ωn = π
L → 0 if n→∞.

Using the the formulae for the
coefficients and the trigonometric identity
cos(x) cos(y) + sin(x) sin(y) = cos(x − y) we get

f (x) =
1

2L

L∫
−L

f (t)dt +
1

π

∞∑
n=1

π

L

L∫
−L

f (t) cos
(nπ

L
(t − x)

)
dt.

The first term tends to zero as L→∞, the second term is a Riemann

integral sum of the function ω 7→ 1
π

L∫
−L

f (t) cos (ω(t − x)) dt with nodes

ωn and with the step size ∆ω.
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Fourier transform, heuristic

Inserting the integral instead of the Riemann sum we have

f (x) =
1

π

∞∫
0

 ∞∫
−∞

f (t) cos (ω(t − x)) dt

 dω.

Applying the previous trigonometric identity we get:

f (x) =

∫ ∞
0

(aω cos(ωx) + bω sin(ωx))dω, (Fourier integrál)

where

aω =
1

π

∞∫
−∞

f (t) cos(ωt)dt, bω =
1

π

∞∫
−∞

f (t) sin(ωt)dt.

As earlier, if f is even, then bω = 0, and if f is odd, then aω = 0.
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Fourier transform

Since cos(ω(t − x)) is even we can integrate over the interval[0,∞]
instead of [−∞,∞], dividing the result by two we get

f (x) =
1

2π

∞∫
−∞

 ∞∫
−∞

f (t) cos (ω(t − x)) dt

 dω.

Moreover, the sin(ω(t − x)) is odd, so

0 =
1

2π

∞∫
−∞

 ∞∫
−∞

f (t) sin (ω(t − x)) dt

 dω.

Subtracting i times the latter from the former, using Euler’s formula, we
get the complex form of the Fourier integral:

f (x) =
1

2π

∞∫
−∞

e iωx

 ∞∫
−∞

e−iωt f (t)dt

 dω.
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Fourier transform

Definition
A function f is said to be absolutely integrable if

∞∫
−∞

|f (t)|dt <∞.

Let f be absolutely integrable then the function

F[f ](ω) = F (ω) :=

∞∫
−∞

f (t)e−iωtdt

is called the Fourier transform of f .Furthermore the function

F−1[F ](t) :=
1

2π

∞∫
−∞

F (ω)e iωtdω

is called teh inverse Fourier transform of F .

Pál Burai Mathematics for Engineers II. lectures



Fourier transform

Definition
A function f is said to be absolutely integrable if

∞∫
−∞

|f (t)|dt <∞.

Let f be absolutely integrable then the function

F[f ](ω) = F (ω) :=

∞∫
−∞

f (t)e−iωtdt

is called the Fourier transform of f .

Furthermore the function

F−1[F ](t) :=
1

2π

∞∫
−∞

F (ω)e iωtdω

is called teh inverse Fourier transform of F .

Pál Burai Mathematics for Engineers II. lectures



Fourier transform

Definition
A function f is said to be absolutely integrable if

∞∫
−∞

|f (t)|dt <∞.

Let f be absolutely integrable then the function

F[f ](ω) = F (ω) :=

∞∫
−∞

f (t)e−iωtdt

is called the Fourier transform of f .Furthermore the function

F−1[F ](t) :=
1

2π

∞∫
−∞

F (ω)e iωtdω

is called teh inverse Fourier transform of F .

Pál Burai Mathematics for Engineers II. lectures



Fourier transform, Examples

Let

f (x) =

{
1 if |x | ≤ 1

2 ,

0 otherwise,
then F[f ](ω) =

2

ω
sin

ω

2
.
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Fourier transform, Examples

Let fγ(x) = e−γ|x|, where γ > 0 is given. Then

F[fγ ](ω) = Fγ(ω) =
2γ

γ2 + ω2
.

The graph of of f1 and F1.
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Fourier transform, Examples

Determine the Fourier transform of the Gauss function ga(x) = e−ax
2

,
where a is a real parameter.

F[ga](ω) = Ga(ω) =

√
π

a
e−

ω2

4a

0.5

1

g
1

g
1/2

g
1/4

0.5

1

1.5

2

2.5

3

3.5
G

1

G
1/2

G
1/4

Pál Burai Mathematics for Engineers II. lectures



Theorem, Properties of Fourier transform

Let f and g be absolutely integrable functions. Denote by F and G their
Fourier transform respectively. Then

F[af (x) + bg(x)](ω) = aF (ω) + bG (ω)

for arbitrary constants a, b;

F
[
f
(x
a

)]
(ω) = |a|F (aω),

where a 6= 0 is an arbitrary constant;

F[f (x − x0)](ω) = e−iωx0F (ω)

for arbitrarily fixed x0;

F[xnf (x)](ω) = inF (n)(ω), és F[f (n)(x)](ω) = (iω)nF (ω)

for an arbitrary natural number n.
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Properties of Fourier transform

Definition
Let f , g : R→ R be given functions, then the function

(f ∗ g)(x) =

∞∫
−∞

f (t)g(x − t)dt

is called the convolution of f and g . (We assume that the integral
above exists.)

Theorem
Assuming the existence of the corresponding integrals, the Fourier
transform of the convolution is the product of the Fourier transforms,
that is to say,

F[(f ∗ g)(x)](ω) = F[f (x)](ω) · F[g(x)](ω).
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Fourier transform, Exercises

1 Let’s define the following transformations, translation, modulation
and dilatation:

(τhf )(x) = f (x+h), (νΩf )(x) = e iΩx f (x), (δaf )(x) = f (ax).

Using only F[f ], express the previous transformations!

2 Using only F−1[F ] express the the previous transformations!

3 Using only F[f ] = F obtain the Fourier transform of the following
functions!

f (2t − 3), f (2(x − 3)), (x2f (3x))′′, x3f ′′(x − 3).
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Discrete Fourier transform

Definition
Let T > 0 and N ∈ N be given, and
fn = f (tn), tn := nT , n = 0, . . . ,N − 1 be a given vector, then the vector

Fk = F (ωk) =
N−1∑
n=0

fne
−iωk tn , ωk =

2πk

NT
, k = 0, 1, . . . ,N − 1

is said to be the discrete Fourier transform of the vector
(f0, . . . , fN−1). In notation: DFT.

Remark

The Discrete Fourier Transform (DFT) is the equivalent of the
continuous Fourier Transform for signals known only at N instants
separated by sample times T .
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Discrete Fourier transform

For the sake of the numerical calculations it is handier to write the
previous equations in matrix form:

F0

F1

F2

...
FN−1

 =


1 1 1 1 · · · 1
1 W W 2 W 3 · · · W N−1

1 W 2 W 4 W 6 · · · W 2(N−1)

...
... · · ·

...
1 W N−1 W 2(N−1) W 3(N−1) · · · W (N−1)(N−1)




f0
f1
f2
...

fN−1

 ,

where W = e
−i2π

N .
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Discrete Fourier transform

Example

Let the continuous signal be

f (t) = 5 + 2 cos(2πt − 90◦) + 3 cos(4πt).

Let us sample f (t) at 4 times per second from t = 0 to t = 3
4 .

The values
of the discrete samples are given by:

fk = 5 + 2 cos(k π2 − 90◦) + 3 cos(kπ),

so
f0 = 8, f1 = 4, f2 = 8, f3 = 0.

Then W = e
−i2π

4 = −i , therefore
F0

F1

F2

F3

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




8
4
8
0

 =


20
−4i
12
4i

 .
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Inverse discrete Fourier transform

Definition
The inverse Fourier transform of

Fk = F (ωk) =
N−1∑
n=0

fne
−i 2π

N nk

is

fk =
1

N

N−1∑
n=0

Fne
( i2π

N nk),

i.e. the inverse matrix is 1
N times the complex conjugate of the original

(symmetric) matrix.
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Fast Fourier transform

The time taken to evaluate a DFT on a digital computer depends
principally on the number of multiplications involved, since these are the
slowest operations.

With the DFT, this number is directly related to N2 (matrix
multiplication of a vector), where N is the length of the transform. For
most problems, N is chosen to be at least 256 in order to get a reasonable
approximation for the spectrum of the sequence under consideration –
hence computational speed becomes a major consideration.

Highly efficient computer algorithms for estimating Discrete Fourier
Transforms have been developed since the mid-60’s. These are known as
Fast Fourier Transform (FFT) algorithms and they rely on the fact that
the standard DFT involves a lot of redundant calculations.
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Fast Fourier transform

Let WN = e
−i2π

N , then

Fk =
N−1∑
n=0

fne
−i2π

N nk =
N−1∑
n=0

fnW
nk
N .

It is easy to realise that the same values of W nk
N are calculated many

times as the computation proceeds. Firstly, the integer product nk
repeats for different combinations of n and k ; secondly, W nk

N is a periodic
function with only N distinct values.

From now on N assumed to be
even. Splitting the single summation over N samples into 2 summations,
each with 1

N samples, one for n even and the other for n odd. Substitute
m = n

2 for n even and m = n−1
2 for n odd and write:

Fk =

N
2 −1∑
m=0

f2mW
2mk
N +

N
2 −1∑
m=0

f2m+1W
(2m+1)k
N =

N
2 −1∑
m=0

f2mW
mk
N
2

+W k
N

N
2 −1∑
m=0

f2m+1W
mk
N
2
,

since W 2mk
N = e−i

2π
N 2mk = e

−i 2π
N
2

mk
= Wmk

N
2

. So, the transformation of a

vector with length N can be expressed by transformed vectors with length
N
2 .
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Fast Fourier transform
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Fast Fourier transform

Therefore
Fk = Gk + W k

NHk .

Thus the N-point DFT can be obtained from two N
2 -point transforms,

one on even input data, Gk , and one on odd input data, Hk . Although
the frequency index k ranges over N values, only N

2 values of Gk and Hk

need to be computed since they are periodic in k with period N
2 . Hence

it is reasonable to take a sample with length 2j (N is an integral power of
2). The DFT requires N2 complex multiplications. At each stage of the
FFT N

2 complex multiplications are required to combine the results of the
previous stage. Since there are log2 N stages, the number of complex
multiplications required is approximately N

2 log2 N.

N N2 (DFT) N
2 log2 N (FFT) Saving

32 1024 80 92%
256 65536 1024 98%

1024 1048576 5120 99.5%
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Fast Fourier transform, Example

Consider N = 8

W 0
8 = 1, W 1

8 =
1− i√

2
=: a, W 2

8 = a2 = −i , W 3
8 = a3 = −ia,

W 4
8 = a4 = −1, W 5

8 = a5 = −a, W 6
8 = a6 = i , W 7

8 = a7 = ia.

Így

F0 = G0 + W 0
8 H0

F1 = G1 + W 1
8 H1

F2 = G2 + W 2
8 H2

F3 = G3 + W 3
8 H3

F40 = G0 + W 4
8 H0 = G0 −W 0

8 H0

F5 = G1 + W 5
8 H1 = G1 −W 1

8 H1

F6 = G2 + W 6
8 H2 = G2 −W 2

8 H2

F7 = G3 + W 7
8 H3 = G3 −W 3

8 H3
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