

Mathematics for Engineers II. lectures

Pál Burai

Fourier transform

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Fourier transform, heuristic

Let's consider the Fourier series of a periodic function f with period $2L$:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi}{L} x \right) + b_n \sin \left(\frac{n\pi}{L} x \right) \right)$$

Taking the limit $L \rightarrow \infty$ the harmonics $\omega_n = \frac{n\pi}{L}$ are getting thicker, that is, $\Delta\omega = \omega_{n+1} - \omega_n = \frac{\pi}{L} \rightarrow 0$ if $n \rightarrow \infty$.

Fourier transform, heuristic

Let's consider the Fourier series of a periodic function f with period $2L$:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi}{L} x \right) + b_n \sin \left(\frac{n\pi}{L} x \right) \right)$$

Taking the limit $L \rightarrow \infty$ the harmonics $\omega_n = \frac{n\pi}{L}$ are getting thicker, that is, $\Delta\omega = \omega_{n+1} - \omega_n = \frac{\pi}{L} \rightarrow 0$ if $n \rightarrow \infty$. Using the the formulae for the coefficients and the trigonometric identity

$\cos(x) \cos(y) + \sin(x) \sin(y) = \cos(x - y)$ we get

$$f(x) = \frac{1}{2L} \int_{-L}^L f(t) dt + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\pi}{L} \int_{-L}^L f(t) \cos \left(\frac{n\pi}{L} (t - x) \right) dt.$$

Fourier transform, heuristic

Let's consider the Fourier series of a periodic function f with period $2L$:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi}{L} x \right) + b_n \sin \left(\frac{n\pi}{L} x \right) \right)$$

Taking the limit $L \rightarrow \infty$ the harmonics $\omega_n = \frac{n\pi}{L}$ are getting thicker, that is, $\Delta\omega = \omega_{n+1} - \omega_n = \frac{\pi}{L} \rightarrow 0$ if $n \rightarrow \infty$. Using the the formulae for the coefficients and the trigonometric identity

$\cos(x)\cos(y) + \sin(x)\sin(y) = \cos(x - y)$ we get

$$f(x) = \frac{1}{2L} \int_{-L}^L f(t) dt + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\pi}{L} \int_{-L}^L f(t) \cos \left(\frac{n\pi}{L} (t - x) \right) dt.$$

The first term tends to zero as $L \rightarrow \infty$, the second term is a Riemann integral sum of the function $\omega \mapsto \frac{1}{\pi} \int_{-L}^L f(t) \cos(\omega(t - x)) dt$ with nodes ω_n and with the step size $\Delta\omega$.

Fourier transform, heuristic

Inserting the integral instead of the Riemann sum we have

$$f(x) = \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^\infty f(t) \cos(\omega(t-x)) dt \right) d\omega.$$

Fourier transform, heuristic

Inserting the integral instead of the Riemann sum we have

$$f(x) = \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^\infty f(t) \cos(\omega(t-x)) dt \right) d\omega.$$

Applying the previous trigonometric identity we get:

$$f(x) = \int_0^\infty (a_\omega \cos(\omega x) + b_\omega \sin(\omega x)) d\omega, \quad (\text{Fourier integrál})$$

where

$$a_\omega = \frac{1}{\pi} \int_{-\infty}^\infty f(t) \cos(\omega t) dt, \quad b_\omega = \frac{1}{\pi} \int_{-\infty}^\infty f(t) \sin(\omega t) dt.$$

Fourier transform, heuristic

Inserting the integral instead of the Riemann sum we have

$$f(x) = \frac{1}{\pi} \int_0^\infty \left(\int_{-\infty}^\infty f(t) \cos(\omega(t-x)) dt \right) d\omega.$$

Applying the previous trigonometric identity we get:

$$f(x) = \int_0^\infty (a_\omega \cos(\omega x) + b_\omega \sin(\omega x)) d\omega, \quad (\text{Fourier integrál})$$

where

$$a_\omega = \frac{1}{\pi} \int_{-\infty}^\infty f(t) \cos(\omega t) dt, \quad b_\omega = \frac{1}{\pi} \int_{-\infty}^\infty f(t) \sin(\omega t) dt.$$

As earlier, if f is even, then $b_\omega = 0$, and if f is odd, then $a_\omega = 0$.

Fourier transform

Since $\cos(\omega(t - x))$ is even we can integrate over the interval $[0, \infty]$ instead of $[-\infty, \infty]$, dividing the result by two we get

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \cos(\omega(t - x)) dt \right) d\omega.$$

Fourier transform

Since $\cos(\omega(t - x))$ is even we can integrate over the interval $[0, \infty]$ instead of $[-\infty, \infty]$, dividing the result by two we get

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \cos(\omega(t - x)) dt \right) d\omega.$$

Moreover, the $\sin(\omega(t - x))$ is odd, so

$$0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \sin(\omega(t - x)) dt \right) d\omega.$$

Fourier transform

Since $\cos(\omega(t - x))$ is even we can integrate over the interval $[0, \infty]$ instead of $[-\infty, \infty]$, dividing the result by two we get

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \cos(\omega(t - x)) dt \right) d\omega.$$

Moreover, the $\sin(\omega(t - x))$ is odd, so

$$0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \sin(\omega(t - x)) dt \right) d\omega.$$

Subtracting i times the latter from the former, using Euler's formula, we get the **complex form of the Fourier integral**:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \left(\int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt \right) d\omega.$$

Definition

A function f is said to be **absolutely integrable** if

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty.$$

Fourier transform

Definition

A function f is said to be **absolutely integrable** if

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty.$$

Let f be absolutely integrable then the function

$$\mathcal{F}[f](\omega) = F(\omega) := \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

is called the **Fourier transform of f** .

Fourier transform

Definition

A function f is said to be **absolutely integrable** if

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty.$$

Let f be absolutely integrable then the function

$$\mathcal{F}[f](\omega) = F(\omega) := \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

is called the **Fourier transform of f** . Furthermore the function

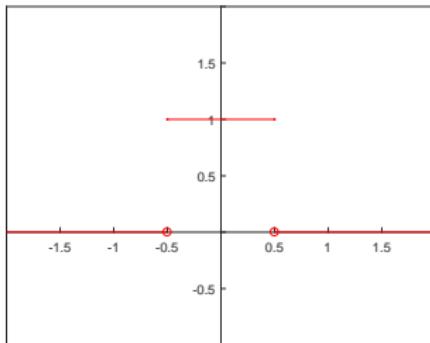
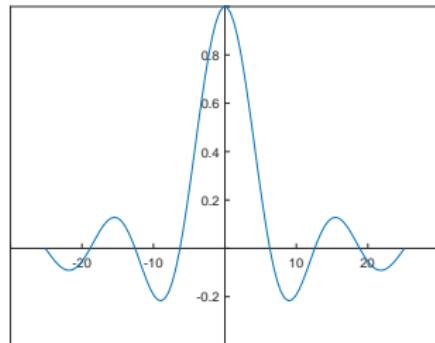
$$\mathcal{F}^{-1}[F](t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$

is called the **inverse Fourier transform of F** .

Fourier transform, Examples

Let

$$f(x) = \begin{cases} 1 & \text{if } |x| \leq \frac{1}{2}, \\ 0 & \text{otherwise,} \end{cases} \quad \text{then} \quad \mathcal{F}[f](\omega) = \frac{2}{\omega} \sin \frac{\omega}{2}.$$

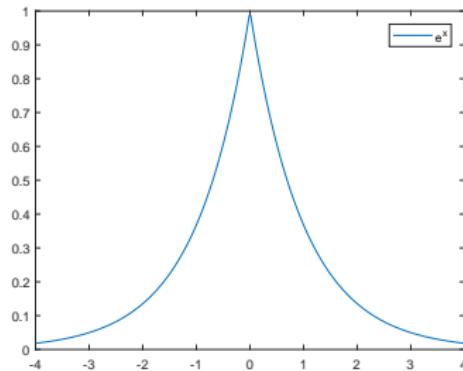
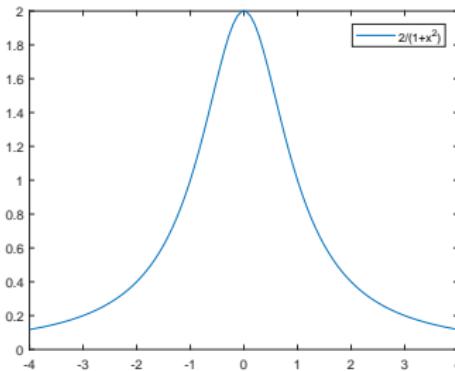


Fourier transform, Examples

Let $f_\gamma(x) = e^{-\gamma|x|}$, where $\gamma > 0$ is given. Then

$$\mathcal{F}[f_\gamma](\omega) = F_\gamma(\omega) = \frac{2\gamma}{\gamma^2 + \omega^2}.$$

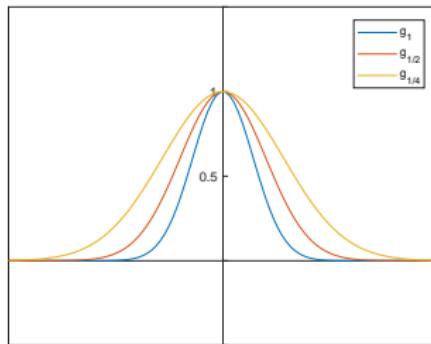
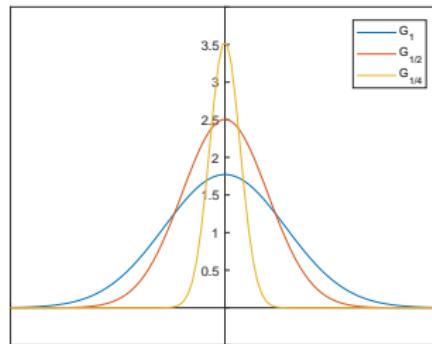
The graph of f_1 and F_1 .



Fourier transform, Examples

Determine the Fourier transform of the Gauss function $g_a(x) = e^{-ax^2}$, where a is a real parameter.

$$\mathcal{F}[g_a](\omega) = G_a(\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$$



Theorem, Properties of Fourier transform

Let f and g be absolutely integrable functions. Denote by F and G their Fourier transform respectively. Then

$$\mathcal{F}[af(x) + bg(x)](\omega) = aF(\omega) + bG(\omega)$$

for arbitrary constants a, b ;

Theorem, Properties of Fourier transform

Let f and g be absolutely integrable functions. Denote by F and G their Fourier transform respectively. Then

$$\mathcal{F}[af(x) + bg(x)](\omega) = aF(\omega) + bG(\omega)$$

for arbitrary constants a, b ;

$$\mathcal{F}\left[f\left(\frac{x}{a}\right)\right](\omega) = |a|F(a\omega),$$

where $a \neq 0$ is an arbitrary constant;

Theorem, Properties of Fourier transform

Let f and g be absolutely integrable functions. Denote by F and G their Fourier transform respectively. Then

$$\mathcal{F}[af(x) + bg(x)](\omega) = aF(\omega) + bG(\omega)$$

for arbitrary constants a, b ;

$$\mathcal{F}\left[f\left(\frac{x}{a}\right)\right](\omega) = |a|F(a\omega),$$

where $a \neq 0$ is an arbitrary constant;

$$\mathcal{F}[f(x - x_0)](\omega) = e^{-i\omega x_0}F(\omega)$$

for arbitrarily fixed x_0 ;

Theorem, Properties of Fourier transform

Let f and g be absolutely integrable functions. Denote by F and G their Fourier transform respectively. Then

$$\mathcal{F}[af(x) + bg(x)](\omega) = aF(\omega) + bG(\omega)$$

for arbitrary constants a, b ;

$$\mathcal{F}\left[f\left(\frac{x}{a}\right)\right](\omega) = |a|F(a\omega),$$

where $a \neq 0$ is an arbitrary constant;

$$\mathcal{F}[f(x - x_0)](\omega) = e^{-i\omega x_0}F(\omega)$$

for arbitrarily fixed x_0 ;

$$\mathcal{F}[x^n f(x)](\omega) = i^n F^{(n)}(\omega), \quad \text{és} \quad \mathcal{F}[f^{(n)}(x)](\omega) = (i\omega)^n F(\omega)$$

for an arbitrary natural number n .

Definition

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be given functions, then the function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

is called the **convolution** of f and g . (We assume that the integral above exists.)

Properties of Fourier transform

Definition

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be given functions, then the function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

is called the **convolution** of f and g . (We assume that the integral above exists.)

Theorem

Assuming the existence of the corresponding integrals, the Fourier transform of the convolution is the product of the Fourier transforms, that is to say,

$$\mathcal{F}[(f * g)(x)](\omega) = \mathcal{F}[f(x)](\omega) \cdot \mathcal{F}[g(x)](\omega).$$

Fourier transform, Exercises

- 1 Let's define the following transformations, translation, modulation and dilatation:

$$(\tau_h f)(x) = f(x+h), \quad (\nu_\Omega f)(x) = e^{i\Omega x} f(x), \quad (\delta_a f)(x) = f(ax).$$

Using only $\mathcal{F}[f]$, express the previous transformations!

Fourier transform, Exercises

- 1 Let's define the following transformations, translation, modulation and dilatation:

$$(\tau_h f)(x) = f(x+h), \quad (\nu_\Omega f)(x) = e^{i\Omega x} f(x), \quad (\delta_a f)(x) = f(ax).$$

Using only $\mathcal{F}[f]$, express the previous transformations!

- 2 Using only $\mathcal{F}^{-1}[F]$ express the the previous transformations!

Fourier transform, Exercises

- 1 Let's define the following transformations, translation, modulation and dilatation:

$$(\tau_h f)(x) = f(x+h), \quad (\nu_\Omega f)(x) = e^{i\Omega x} f(x), \quad (\delta_a f)(x) = f(ax).$$

Using only $\mathcal{F}[f]$, express the previous transformations!

- 2 Using only $\mathcal{F}^{-1}[F]$ express the the previous transformations!
- 3 Using only $\mathcal{F}[f] = F$ obtain the Fourier transform of the following functions!

$$f(2t - 3), \quad f(2(x - 3)), \quad (x^2 f(3x))'', \quad x^3 f''(x - 3).$$

Definition

Let $T > 0$ and $N \in \mathbb{N}$ be given, and

$f_n = f(t_n)$, $t_n := nT$, $n = 0, \dots, N-1$ be a given vector, then the vector

$$F_k = F(\omega_k) = \sum_{n=0}^{N-1} f_n e^{-i\omega_k t_n}, \quad \omega_k = \frac{2\pi k}{NT}, \quad k = 0, 1, \dots, N-1$$

is said to be the **discrete Fourier transform of the vector** (f_0, \dots, f_{N-1}) . In notation: DFT.

Definition

Let $T > 0$ and $N \in \mathbb{N}$ be given, and

$f_n = f(t_n)$, $t_n := nT$, $n = 0, \dots, N-1$ be a given vector, then the vector

$$F_k = F(\omega_k) = \sum_{n=0}^{N-1} f_n e^{-i\omega_k t_n}, \quad \omega_k = \frac{2\pi k}{NT}, \quad k = 0, 1, \dots, N-1$$

is said to be the **discrete Fourier transform of the vector** (f_0, \dots, f_{N-1}) . In notation: DFT.

Remark

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated by sample times T .

Discrete Fourier transform

For the sake of the numerical calculations it is handier to write the previous equations in matrix form:

$$\begin{bmatrix} F_0 \\ F_1 \\ F_2 \\ \vdots \\ F_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^2 & W^3 & \cdots & W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \cdots & W^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & W^{N-1} & W^{2(N-1)} & W^{3(N-1)} & \cdots & W^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{bmatrix},$$

where $W = e^{\frac{-i2\pi}{N}}$.

Discrete Fourier transform

Example

Let the continuous signal be

$$f(t) = 5 + 2 \cos(2\pi t - 90^\circ) + 3 \cos(4\pi t).$$

Let us sample $f(t)$ at 4 times per second from $t = 0$ to $t = \frac{3}{4}$.

Discrete Fourier transform

Example

Let the continuous signal be

$$f(t) = 5 + 2 \cos(2\pi t - 90^\circ) + 3 \cos(4\pi t).$$

Let us sample $f(t)$ at 4 times per second from $t = 0$ to $t = \frac{3}{4}$. The values of the discrete samples are given by:

$$f_k = 5 + 2 \cos\left(k \frac{\pi}{2} - 90^\circ\right) + 3 \cos(k\pi),$$

so

$$f_0 = 8, \quad f_1 = 4, \quad f_2 = 8, \quad f_3 = 0.$$

Discrete Fourier transform

Example

Let the continuous signal be

$$f(t) = 5 + 2 \cos(2\pi t - 90^\circ) + 3 \cos(4\pi t).$$

Let us sample $f(t)$ at 4 times per second from $t = 0$ to $t = \frac{3}{4}$. The values of the discrete samples are given by:

$$f_k = 5 + 2 \cos(k \frac{\pi}{2} - 90^\circ) + 3 \cos(k\pi),$$

so

$$f_0 = 8, \quad f_1 = 4, \quad f_2 = 8, \quad f_3 = 0.$$

Then $W = e^{\frac{-i2\pi}{4}} = -i$, therefore

$$\begin{bmatrix} F_0 \\ F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 8 \\ 0 \end{bmatrix} = \begin{bmatrix} 20 \\ -4i \\ 12 \\ 4i \end{bmatrix}.$$

Definition

The **inverse Fourier transform** of

$$F_k = F(\omega_k) = \sum_{n=0}^{N-1} f_n e^{-i \frac{2\pi}{N} nk}$$

is

$$f_k = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{(\frac{i2\pi}{N} nk)},$$

i.e. the inverse matrix is $\frac{1}{N}$ times the complex conjugate of the original (symmetric) matrix.

Fast Fourier transform

The time taken to evaluate a DFT on a digital computer depends principally on the number of multiplications involved, since these are the slowest operations.

The time taken to evaluate a DFT on a digital computer depends principally on the number of multiplications involved, since these are the slowest operations.

With the DFT, this number is directly related to N^2 (matrix multiplication of a vector), where N is the length of the transform. For most problems, N is chosen to be at least 256 in order to get a reasonable approximation for the spectrum of the sequence under consideration – hence computational speed becomes a major consideration.

The time taken to evaluate a DFT on a digital computer depends principally on the number of multiplications involved, since these are the slowest operations.

With the DFT, this number is directly related to N^2 (matrix multiplication of a vector), where N is the length of the transform. For most problems, N is chosen to be at least 256 in order to get a reasonable approximation for the spectrum of the sequence under consideration – hence computational speed becomes a major consideration.

Highly efficient computer algorithms for estimating Discrete Fourier Transforms have been developed since the mid-60's. These are known as Fast Fourier Transform (FFT) algorithms and they rely on the fact that the standard DFT involves a lot of redundant calculations.

Fast Fourier transform

Let $W_N = e^{\frac{-i2\pi}{N}}$, then

$$F_k = \sum_{n=0}^{N-1} f_n e^{\frac{-i2\pi}{N} nk} = \sum_{n=0}^{N-1} f_n W_N^{nk}.$$

It is easy to realise that the same values of W_N^{nk} are calculated many times as the computation proceeds. Firstly, the integer product nk repeats for different combinations of n and k ; secondly, W_N^{nk} is a periodic function with only N distinct values.

Fast Fourier transform

Let $W_N = e^{\frac{-i2\pi}{N}}$, then

$$F_k = \sum_{n=0}^{N-1} f_n e^{\frac{-i2\pi}{N} nk} = \sum_{n=0}^{N-1} f_n W_N^{nk}.$$

It is easy to realise that the same values of W_N^{nk} are calculated many times as the computation proceeds. Firstly, the integer product nk repeats for different combinations of n and k ; secondly, W_N^{nk} is a periodic function with only N distinct values. From now on N assumed to be even. Splitting the single summation over N samples into 2 summations, each with $\frac{1}{2}N$ samples, one for n even and the other for n odd. Substitute $m = \frac{n}{2}$ for n even and $m = \frac{n-1}{2}$ for n odd and write:

$$F_k = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} W_N^{2mk} + \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} W_N^{(2m+1)k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} W_{\frac{N}{2}}^{mk} + W_N^k \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} W_{\frac{N}{2}}^{mk},$$

since $W_N^{2mk} = e^{-i\frac{2\pi}{N}2mk} = e^{-i\frac{2\pi}{2}mk} = W_{\frac{N}{2}}^{mk}$. So, the transformation of a vector with length N can be expressed by transformed vectors with length $\frac{N}{2}$.

Fast Fourier transform

Therefore

$$F_k = G_k + W_N^k H_k.$$

Fast Fourier transform

Therefore

$$F_k = G_k + W_N^k H_k.$$

Thus the N -point DFT can be obtained from two $\frac{N}{2}$ -point transforms, one on even input data, G_k , and one on odd input data, H_k . Although the frequency index k ranges over N values, only $\frac{N}{2}$ values of G_k and H_k need to be computed since they are periodic in k with period $\frac{N}{2}$. Hence it is reasonable to take a sample with length 2^j (N is an integral power of 2).

Fast Fourier transform

Therefore

$$F_k = G_k + W_N^k H_k.$$

Thus the N -point DFT can be obtained from two $\frac{N}{2}$ -point transforms, one on even input data, G_k , and one on odd input data, H_k . Although the frequency index k ranges over N values, only $\frac{N}{2}$ values of G_k and H_k need to be computed since they are periodic in k with period $\frac{N}{2}$. Hence it is reasonable to take a sample with length 2^j (N is an integral power of 2). The DFT requires N^2 complex multiplications. At each stage of the FFT $\frac{N}{2}$ complex multiplications are required to combine the results of the previous stage. Since there are $\log_2 N$ stages, the number of complex multiplications required is approximately $\frac{N}{2} \log_2 N$.

N	N^2 (DFT)	$\frac{N}{2} \log_2 N$ (FFT)	Saving
32	1024	80	92%
256	65536	1024	98%
1024	1048576	5120	99.5%

Fast Fourier transform, Example

Consider $N = 8$

$$W_8^0 = 1, \quad W_8^1 = \frac{1-i}{\sqrt{2}} =: a, \quad W_8^2 = a^2 = -i, \quad W_8^3 = a^3 = -ia,$$

$$W_8^4 = a^4 = -1, \quad W_8^5 = a^5 = -a, \quad W_8^6 = a^6 = i, \quad W_8^7 = a^7 = ia.$$

Így

$$F_0 = G_0 + W_8^0 H_0$$

$$F_1 = G_1 + W_8^1 H_1$$

$$F_2 = G_2 + W_8^2 H_2$$

$$F_3 = G_3 + W_8^3 H_3$$

$$F_4 = G_0 + W_8^4 H_0 = G_0 - W_8^0 H_0$$

$$F_5 = G_1 + W_8^5 H_1 = G_1 - W_8^1 H_1$$

$$F_6 = G_2 + W_8^6 H_2 = G_2 - W_8^2 H_2$$

$$F_7 = G_3 + W_8^7 H_3 = G_3 - W_8^3 H_3$$